Lọc bởi:

  • Chú thích dữ liệu là điều cần thiết để cải thiện hiệu suất thương mại điện tử. Dữ liệu được chú thích tốt có thể cải thiện khả năng hiển thị hữu cơ, thu hút nhiều khách hàng hơn và tăng tỷ lệ chuyển đổi. Tuy nhiên, hiệu quả của chú thích dữ liệu phụ thuộc vào độ chính xác và tính liên quan của nó.

    Tìm hiểu thêm 

    Giải pháp dữ liệu chuyển văn bản thành giọng nói (TTS) mang lại nhiều lợi ích. Tuy nhiên, việc triển khai chúng đòi hỏi phải cung cấp các bộ dữ liệu chính xác và mở rộng. Tại Shaip, chúng tôi sử dụng bộ dữ liệu Chuyển văn bản thành giọng nói do chuyên gia tuyển chọn, có thể giúp bạn xây dựng các giải pháp TTS nâng cao bao gồm các ngôn ngữ toàn cầu.

    Tìm hiểu thêm 

    Mô hình ngôn ngữ lớn (LLM) cung cấp nền tảng để xây dựng các bộ dữ liệu chất lượng cao và đảm bảo rằng chúng sau đó được sử dụng để tạo các mô hình AI tổng hợp hỗ trợ NLP. Trong một thế giới dựa trên dữ liệu, dữ liệu đào tạo phù hợp là rất quan trọng để đạt được thành công dưới mọi hình thức.

    Tìm hiểu thêm 

    Xây dựng bộ dữ liệu chất lượng cao bằng LLM là một cách tiếp cận mang tính biến đổi, kết hợp sức mạnh của mô hình ngôn ngữ với các kỹ thuật tạo tập dữ liệu truyền thống. Bằng cách tận dụng LLM để tìm nguồn dữ liệu, tiền xử lý, tăng cường, ghi nhãn và đánh giá, các nhà nghiên cứu có thể xây dựng các bộ dữ liệu mạnh mẽ và đa dạng một cách hiệu quả hơn.

    Tìm hiểu thêm 

    Dịch vụ ghi nhãn của chúng tôi đảm bảo thuật toán của bạn được đào tạo bằng các bộ dữ liệu chính xác nhất để mang lại trải nghiệm tìm kiếm liền mạch. Với chất lượng kín đáo và các giao thức xác thực, chúng tôi triển khai con người trong một hệ sinh thái được thiết kế để cải thiện AI.

    Tìm hiểu thêm 

    Các mô hình AI có thể hiểu ngữ cảnh hiệu quả hơn nhờ bộ dữ liệu lệnh giọng nói được tùy chỉnh, cải thiện tính trực quan và giống con người của các tương tác. AI trở nên tốt hơn trong việc xác định và phản ứng chính xác bằng cách thêm các lệnh dành riêng cho miền, giọng vùng và các thuật ngữ dành riêng cho ngành.

    Tìm hiểu thêm 

    Một trong những cách tốt nhất để vượt qua các mối lo ngại là theo kịp những tiến bộ và phát triển mới nhất trong không gian LLM. Điều này đặc biệt quan trọng đối với an ninh mạng. Sự hiểu biết của bạn về chủ đề càng rộng thì bạn càng có thể nghĩ ra nhiều số liệu và kỹ thuật hơn để giám sát các mô hình của mình.

    Tìm hiểu thêm 

    Nếu bạn đang tìm kiếm bộ dữ liệu chất lượng để đào tạo mô hình của mình, chúng tôi khuyên bạn nên liên hệ với chúng tôi để thảo luận về phạm vi của bạn. Chúng tôi sẽ bắt đầu với việc tìm nguồn cung ứng và cung cấp bộ dữ liệu lệnh giọng nói tùy chỉnh, chất lượng cao cho tầm nhìn của bạn, bất kể quy mô yêu cầu.

    Tìm hiểu thêm 

    Sự tương tự này có giá trị khi so sánh nó với lửa vì khi phát hiện ra lửa, mọi người đều sợ hãi. Họ coi lửa là ngày tận thế, có khả năng gây ra sự hủy diệt. Chỉ khi con người chúng ta nỗ lực thuần hóa lửa thì quá trình tiến hóa mới diễn ra.

    Tìm hiểu thêm 

    Shaip đại diện cho một nhóm chuyên gia tài năng có kiến ​​thức sâu rộng về cách AI và các ứng dụng của nó có thể biến đổi tổ chức của bạn. Tận dụng sự hiểu biết của chúng tôi về AI, cụ thể là khả năng chuyển văn bản thành giọng nói, để xây dựng các chương trình AI dựa trên dữ liệu chính xác và phong phú, cho phép bạn cá nhân hóa việc sử dụng AI và đạt được kết quả tốt nhất có thể.

    Tìm hiểu thêm 

    Chất lượng và độ chính xác của kết quả do hệ thống nhận dạng khuôn mặt và cảm xúc cung cấp phụ thuộc vào dữ liệu. Dữ liệu càng chính xác và mở rộng thì cơ hội của chương trình AI trong việc xác định và phát hiện cảm xúc càng cao.

    Tìm hiểu thêm 

    Trí tuệ nhân tạo có một số lợi thế sâu rộng đối với ngành bảo hiểm, miễn là các công ty hiểu được cách triển khai của nó. Khi các nhiệm vụ như xử lý khiếu nại, cài đặt ưu đãi và phát hiện hư hỏng được sắp xếp hợp lý, nó cũng có thể hỗ trợ dịch vụ khách hàng, tăng mức độ hài lòng chung.

    Tìm hiểu thêm 

    Việc loại bỏ nhận dạng dữ liệu là rất quan trọng để bảo vệ thông tin nhận dạng cá nhân trong lĩnh vực chăm sóc sức khỏe, phù hợp với các yêu cầu quy định như HIPAA và GDPR. Các công cụ nổi bật, bao gồm IBM InfoSphere Optim, Google Healthcare API, AWS Comprehend Medical, Shaip và Private-AI, cung cấp các giải pháp đa dạng để che giấu dữ liệu hiệu quả.

    Tìm hiểu thêm 

    AI sáng tạo có một số tính năng và chức năng mạnh mẽ được thiết lập để cải tiến các hệ thống hỗ trợ dịch vụ khách hàng. Khi có thể giải quyết kịp thời các vấn đề của khách hàng, AI sáng tạo cũng có thể thay thế các đại lý làm người phản hồi đầu tiên và giao tiếp với khách hàng như một con người.

    Tìm hiểu thêm 

    Xóa nhận dạng dữ liệu là một quy trình quan trọng để đảm bảo bảo vệ việc truy cập trái phép và sử dụng trái phép dữ liệu cá nhân. Đặc biệt quan trọng đối với dữ liệu chăm sóc sức khỏe, quy trình này đảm bảo không có thông tin nhận dạng cá nhân nào rơi vào tay các cá nhân ngoài những thông tin có liên quan chặt chẽ đến dữ liệu.

    Tìm hiểu thêm 

    AI đàm thoại và sáng tạo đang biến đổi thế giới của chúng ta theo những cách độc đáo. AI đàm thoại giúp việc nói chuyện với máy móc trở nên dễ dàng và hữu ích, cải thiện dịch vụ hỗ trợ khách hàng và chăm sóc sức khỏe. Mặt khác, AI sáng tạo là một cỗ máy sáng tạo. Nó phát minh ra nội dung mới, nguyên bản về nghệ thuật, âm nhạc, v.v. Hiểu các loại AI này là chìa khóa cho các quyết định kinh doanh, đạo đức và đổi mới thông minh.

    Tìm hiểu thêm 

    Công nghệ giọng nói vẫn là những công nghệ tương đối mới và chúng tôi vẫn đang nỗ lực để nắm bắt tốt các giải pháp được cung cấp cùng với chúng. Trong môi trường chăm sóc sức khỏe nhạy cảm về thời gian, hiệu quả và độ chính xác là điều tối quan trọng.

    Tìm hiểu thêm 

    AI sáng tạo đang định hình lại bối cảnh của các dịch vụ tài chính và ngân hàng, mang lại hiệu quả, tăng cường bảo mật và mang lại trải nghiệm cá nhân hóa cho cả khách hàng và tổ chức. Khi công nghệ tiếp tục phát triển, tác động của nó đối với ngành tài chính có thể sẽ tăng lên, mở ra một kỷ nguyên mới về đổi mới và tối ưu hóa.

    Tìm hiểu thêm 

    Việc sử dụng Xử lý ngôn ngữ tự nhiên (NLP) trong ngành chăm sóc sức khỏe và dược phẩm chủ yếu dựa vào việc phân tích dữ liệu phi cấu trúc. Với thông tin liên quan, các tổ chức chăm sóc sức khỏe có thể rút ra một số lợi thế và cung cấp dịch vụ chăm sóc sức khỏe tốt hơn cho bệnh nhân.

    Tìm hiểu thêm 

    Số lượng và tần suất của nội dung do người dùng tạo sẽ tăng lên trong những năm tới. Khách hàng ngày nay có quyền truy cập vào các công cụ sáng tạo, cho phép họ biết mọi thứ về thương hiệu. Trong trường hợp việc tương tác với khách hàng hiện tại, khách hàng mới và khách hàng tiềm năng là điều cần thiết đối với thương hiệu thì việc giám sát và kiểm duyệt nội dung là mấu chốt để tạo ra hình ảnh tích cực.

    Tìm hiểu thêm 

    Ghi nhãn dữ liệu hiệu quả là một phần quan trọng trong việc cải thiện mức độ liên quan của tìm kiếm. Các nền tảng và doanh nghiệp thương mại điện tử được hưởng lợi nhiều nhất từ ​​việc ghi nhãn dữ liệu vì họ cần đưa sản phẩm của mình lên kết quả tìm kiếm, điều này dẫn đến tăng doanh thu và doanh thu.

    Tìm hiểu thêm 

    Xử lý ngôn ngữ tự nhiên (NLP) đã bắt đầu một cuộc cách mạng phân tích và trích xuất thông tin trong tất cả các ngành. Tính linh hoạt của công nghệ này cũng đang phát triển để cung cấp các giải pháp tốt hơn và ứng dụng mới. Việc sử dụng NLP trong tài chính không chỉ giới hạn ở các ứng dụng mà chúng tôi đã đề cập ở trên. Theo thời gian, chúng ta có thể sử dụng công nghệ này và các kỹ thuật của nó cho những nhiệm vụ và hoạt động phức tạp hơn nữa.

    Tìm hiểu thêm 

    Cốt lõi của ứng dụng AI trong chăm sóc sức khỏe là dữ liệu và khả năng phân tích chính xác của nó. Bằng cách sử dụng dữ liệu và thông tin do các chuyên gia chăm sóc sức khỏe cung cấp, các công cụ và công nghệ AI có thể cung cấp các giải pháp chăm sóc sức khỏe tốt hơn về mặt chẩn đoán, điều trị, dự đoán, kê đơn và hình ảnh.

    Tìm hiểu thêm 

    Nhận dạng thực thể được đặt tên là một kỹ thuật quan trọng mở đường cho sự hiểu biết nâng cao của máy về văn bản. Mặc dù các bộ dữ liệu nguồn mở có những ưu điểm và nhược điểm nhưng chúng là công cụ để đào tạo và tinh chỉnh các mô hình NER. Việc lựa chọn và áp dụng hợp lý các nguồn lực này có thể nâng cao đáng kể kết quả của các dự án NLP.

    Tìm hiểu thêm 

    AI sáng tạo mang lại những lợi ích vượt trội như tính hiệu quả, khả năng mở rộng và cá nhân hóa nhờ khả năng tạo ra nội dung đa dạng. Tuy nhiên, những thách thức như kiểm soát chất lượng, hạn chế về tính sáng tạo và những lo ngại về đạo đức đòi hỏi phải có sự quan tâm cẩn thận.

    Tìm hiểu thêm 

    AI sáng tạo là một biên giới thú vị đang xác định lại ranh giới của công nghệ và sự sáng tạo. Từ việc tạo văn bản giống con người đến tạo hình ảnh chân thực, tăng cường phát triển mã và thậm chí mô phỏng đầu ra âm thanh độc đáo, các ứng dụng trong thế giới thực của nó rất đa dạng và có tính biến đổi.

    Tìm hiểu thêm 

    Các ứng dụng của học máy và AI trong phân tích dữ liệu lâm sàng rất sâu rộng và mang tính đột phá. Chúng mang lại tiềm năng to lớn trong việc định hình lại việc chăm sóc bệnh nhân, cải thiện nghiên cứu y học và cung cấp các chẩn đoán sớm hơn và chính xác hơn.

    Tìm hiểu thêm 

    Shaip đi đầu trong việc cung cấp dữ liệu y tế và chăm sóc sức khỏe hàng đầu quan trọng cho các mô hình AI và máy học (ML). Nếu bạn đang bắt tay vào một dự án AI chăm sóc sức khỏe hoặc yêu cầu dữ liệu y tế cụ thể, Shaip là đối tác hoàn hảo.

    Tìm hiểu thêm 

    Trợ lý giọng nói không còn là điều mới lạ; chúng đang nhanh chóng trở nên quan trọng đối với các tương tác kỹ thuật số hàng ngày của chúng ta. Sự gia tăng của trợ lý giọng nói đa ngôn ngữ hứa hẹn sẽ là một bước nhảy vọt đáng kể, phá bỏ rào cản ngôn ngữ và thúc đẩy kết nối toàn cầu lớn hơn.

    Tìm hiểu thêm 

    Chú thích tài liệu là một khối xây dựng thiết yếu trong AI, máy học và xử lý ngôn ngữ tự nhiên. Nó tăng cường khả năng hiểu và xử lý của hệ thống AI, hỗ trợ khai thác thông tin hiệu quả và thúc đẩy tự động hóa trên nhiều lĩnh vực khác nhau.

    Tìm hiểu thêm 

    Như chúng ta đã khám phá trong các ví dụ trên, phân tích cảm tính có tiềm năng đáng chú ý trong nhiều ứng dụng khác nhau, trải dài từ dịch vụ khách hàng đến chính trị. Nó cho phép các tổ chức mở khóa sức mạnh của dữ liệu chủ quan và chuyển đổi văn bản phi cấu trúc thành thông tin chi tiết có thể hành động.

    Tìm hiểu thêm 

    Tương lai của AI trong chăm sóc sức khỏe đầy hứa hẹn và tiềm năng, với các xu hướng mới nổi cho năm 2023 báo hiệu một sự thay đổi mang tính đột phá trong việc cung cấp dịch vụ chăm sóc bệnh nhân.

    Tìm hiểu thêm 

    Các trường hợp sử dụng của Xử lý ngôn ngữ tự nhiên trong chăm sóc sức khỏe là rất lớn và có tính biến đổi. Bằng cách khai thác sức mạnh của AI, học máy và AI đàm thoại, NLP đang cách mạng hóa cách các chuyên gia chăm sóc sức khỏe tiếp cận chăm sóc bệnh nhân. Nó đang làm cho quy trình công việc y tế hiệu quả hơn và cải thiện kết quả tổng thể của bệnh nhân.

    Tìm hiểu thêm 

    Việc áp dụng khai thác thực thể dựa trên AI đã dẫn đến những tiến bộ đáng kể trong các ngành khác nhau, từ chăm sóc sức khỏe đến thương mại điện tử, cải thiện quá trình ra quyết định, hợp lý hóa quy trình và nâng cao trải nghiệm của khách hàng.

    Tìm hiểu thêm 

    Công nghệ nhận dạng cảm xúc là một công cụ mạnh mẽ có thể nâng cao hiểu biết của chúng ta về cảm xúc con người và giúp chúng ta tạo ra trải nghiệm cá nhân hóa trong nhiều lĩnh vực khác nhau như chăm sóc sức khỏe, giáo dục và tiếp thị.

    Tìm hiểu thêm 

    Nhìn chung, lĩnh vực chăm sóc sức khỏe có rất nhiều bệnh nhân và bác sĩ, những người có động lực để một lần nữa tạo ra sự khác biệt trong cuộc sống của mọi người trên khắp thế giới. Truy cập vào các tập dữ liệu lớn là trí tuệ nhân tạo một chiều sẽ tiếp tục chứng tỏ mình là tương lai của y học. Tùy thuộc vào các nhà nghiên cứu và nhà phát triển có tận dụng các bộ dữ liệu độc đáo này để nâng cao hiểu biết của chúng ta về các thử nghiệm lâm sàng và chăm sóc bệnh nhân khi chúng ta hướng tới một tương lai ngày càng kết nối cho mọi người.

    Tìm hiểu thêm 

    XNUMX năm tới sẽ mang lại nhiều trải nghiệm AI hợp lý hơn, các tính năng bảo mật giúp tăng cường các tương tác đó, v.v. Xu hướng AI đàm thoại trong vài năm tới sẽ sáng sủa hơn và dễ tiếp cận hơn bao giờ hết.

    Tìm hiểu thêm 

    Những thay đổi đang diễn ra, dẫn đến một tương lai có khả năng sinh lãi cao hơn, mang lại trải nghiệm người dùng tốt hơn. Với những thay đổi này cùng với khả năng học hỏi từ những sai lầm của các công ty khác, lĩnh vực BFSI sẽ tiếp tục tiến nhanh về phía sử dụng nhận dạng khuôn mặt—một mục tiêu cuối cùng hiệu quả hơn, an toàn hơn cho tất cả các cơ quan liên quan.

    Tìm hiểu thêm 

    Tìm kiếm bằng giọng nói là một lĩnh vực công nghệ đang phát triển. Nó đang tiến những bước dài chậm rãi nhưng chắc chắn khi trở nên có nhiều khả năng hơn với AI, xử lý ngôn ngữ tự nhiên và máy học . Loại AI tồn tại hiện nay không có tri giác; những trợ lý giọng nói này là công cụ giúp cuộc sống của chúng ta tốt hơn, đơn giản hơn và hiệu quả hơn.

    Tìm hiểu thêm 

    Dịch vụ ghi nhãn dữ liệu giúp doanh nghiệp biến dữ liệu không có nhãn hoặc thẻ thành dữ liệu có. Họ thường sử dụng lực lượng đặc nhiệm con người hoặc máy học để gắn nhãn cho các tập dữ liệu mà doanh nghiệp cung cấp cho họ.

    Tìm hiểu thêm 

    Công nghệ nhận dạng giọng nói có khả năng cách mạng hóa ngành chăm sóc sức khỏe theo nhiều cách. Bằng cách cho phép lập tài liệu nhanh hơn và chính xác hơn, giảm nguy cơ sai sót và cải thiện sự tham gia của bệnh nhân, công nghệ nhận dạng giọng nói có thể giúp các nhà cung cấp dịch vụ chăm sóc sức khỏe cung cấp dịch vụ chăm sóc chất lượng tốt hơn.

    Tìm hiểu thêm 

    Ngành bảo hiểm có rất nhiều dữ liệu, nhưng nó lộn xộn đến mức gần như không thể tìm kiếm. Ngành bảo hiểm cần phải được số hóa—và bây giờ nó có thể làm được. Với OCR tại chỗ, việc thu thập và sắp xếp dữ liệu trở nên đơn giản như chụp ảnh hoặc nhập một vài từ.

    Tìm hiểu thêm 

    Các ngân hàng sẽ có trải nghiệm tích cực khi triển khai các công nghệ AI. Điều này dựa trên các cuộc phỏng vấn với các công ty đã sử dụng AI trong quy trình kinh doanh của họ. Miễn là các biện pháp bảo vệ được xây dựng để đảm bảo an toàn dữ liệu của khách hàng và các tiêu chuẩn đạo đức có thể được tự động điều chỉnh, các ngân hàng nên triển khai AI vào hệ thống của họ.

    Tìm hiểu thêm 

    Tác động của máy học trong thị trường trung tâm cuộc gọi là có thật và có thể đo lường được. Thu thập dữ liệu thời gian thực và học máy đã kết hợp với nhau để cho phép các trung tâm cuộc gọi hoạt động hiệu quả hơn nữa. Ngoài ra, các giải pháp dựa trên giọng nói đã tăng lên khắp Bắc Mỹ và tiếp tục lan rộng trên toàn cầu.

    Tìm hiểu thêm 

    Công nghệ nhận dạng giọng nói ngày càng trở nên quan trọng trong chăm sóc sức khỏe, các bác sĩ và y tá ngày càng dựa vào nó để xử lý nhiều nhiệm vụ chuyên môn của họ. Mặc dù vẫn còn nhiều câu hỏi cần được giải quyết trước khi chúng ta thấy công nghệ này được sử dụng rộng rãi trong bệnh viện, môi trường lâm sàng và văn phòng bác sĩ, nhưng những dấu hiệu ban đầu cho thấy nhiều hứa hẹn.

    Tìm hiểu thêm 

    Công nghệ chú thích video nhằm giữ an toàn cho các hệ thống AI bán lẻ và khách hàng. Phần mềm chú thích video là một cách tuyệt vời để làm điều này bằng cách cho phép mọi người nhanh chóng và dễ dàng thông báo cho chính quyền khi họ chứng kiến ​​điều gì đó đáng ngờ trong môi trường bán lẻ và; giúp các hệ thống AI học hỏi từ kinh nghiệm trong quá khứ để chúng có thể điều chỉnh phản ứng của mình sao cho cảm thấy tốt hơn về hành vi được coi là bình thường.

    Tìm hiểu thêm 

    Các trường hợp sử dụng nhận dạng khuôn mặt có thể mang lại hiệu quả kỳ diệu khi lưu trữ và truy xuất dữ liệu, nhưng chúng cũng đi kèm với một tình huống khó xử về mặt đạo đức hấp dẫn. Liệu nó có ý nghĩa để sử dụng một công nghệ như vậy? Một số người tin rằng câu trả lời là “không”, đặc biệt liên quan đến việc xâm phạm quyền riêng tư của nhận dạng khuôn mặt. Những người khác trích dẫn việc sử dụng các công cụ mới này, đó là lý do tại sao công nghệ này có thể không phải là thứ bạn muốn tránh bằng mọi giá.

    Tìm hiểu thêm 

    AI sẽ thay đổi cách chúng ta tương tác với công nghệ. Khi bạn đã quen với AI đàm thoại và nó trở thành một phần liền mạch trong cuộc sống của bạn, bạn sẽ tự hỏi làm thế nào bạn có thể làm được nếu không có nó.

    Tìm hiểu thêm 

    Các từ đánh thức tùy chỉnh có thể giúp cá nhân hóa thương hiệu của bạn và tạo sự khác biệt với các đối thủ cạnh tranh. Có rất nhiều yếu tố cần xem xét khi chọn một từ đánh thức tùy chỉnh. Tuy nhiên, nếu bạn muốn nổi bật trong thế giới kinh doanh cạnh tranh ngày nay, bạn nên nỗ lực hơn nữa để đảm bảo rằng trợ lý giọng nói của mình có âm thanh độc đáo.

    Tìm hiểu thêm 

    Những tiến bộ công nghệ giọng nói mới đang ở đây để ở lại. Chúng sẽ chỉ tiếp tục phát triển phổ biến, khiến bây giờ là thời điểm hoàn hảo để vượt lên dẫn đầu và bắt đầu tạo ra trải nghiệm giọng nói sáng tạo cho người lái xe. Khi các nhà sản xuất ô tô tích hợp nhận dạng giọng nói vào ô tô của họ, điều này mở ra một thế giới khả năng mới cho công nghệ và người dùng.

    Tìm hiểu thêm 

    Rõ ràng là AI trong thực phẩm sẽ có ảnh hưởng rất lớn đến cách chúng ta ăn uống. Từ việc các chuỗi thức ăn nhanh hướng tới thực đơn có thể tùy chỉnh nhiều hơn cho đến hàng loạt nhà hàng mới, sáng tạo, có vô số cơ hội để công nghệ đơn giản hóa trải nghiệm ăn uống và cải thiện chất lượng thực phẩm của chúng ta. Với sự tiến bộ của trí tuệ nhân tạo và các thuật toán học máy, chúng ta có thể mong đợi AI thực phẩm thông minh sẽ tác động tích cực đến sức khỏe của chúng ta và tác động sinh thái tổng thể của hệ thống thực phẩm của chúng ta.

    Tìm hiểu thêm 

    Tóm lại, phân đoạn ngữ nghĩa là một lĩnh vực quan trọng của thuật toán học sâu được tận dụng để thúc đẩy những tiến bộ vượt bậc trong thị giác máy tính. Phân đoạn ngữ nghĩa sẽ tiếp tục phát triển trong nhiều danh mục phụ liên quan này, phát hiện, phân loại và bản địa hóa đối tượng.

    Tìm hiểu thêm 

    Nhìn chung, một hệ thống nhận dạng giọng nói hiệu quả phải dễ dàng thiết lập và sử dụng trong các tình huống khác nhau trong khi vẫn đạt được kết quả chính xác mà không gây khó chịu cho người dùng.

    Tìm hiểu thêm 

    Việc xây dựng dữ liệu nhà thông minh yêu cầu một tập hợp các quy trình đảm bảo rằng cuối cùng thì thuật toán học máy đang hoạt động và xử lý dữ liệu mà không có bất kỳ sự gián đoạn nào.

    Tìm hiểu thêm 

    Ngành bảo hiểm có truyền thống bảo thủ với những tiến bộ công nghệ và do dự trong việc áp dụng các công nghệ mới. Tuy nhiên, thời thế đang thay đổi và trí tuệ nhân tạo (AI) đang được các công ty bảo hiểm quan tâm nhiều, những người bắt đầu nhận ra vai trò quan trọng của AI trong hoạt động của họ.

    Tìm hiểu thêm 

    Thu thập dữ liệu là quá trình thu thập, phân tích và đo lường dữ liệu chính xác từ các hệ thống khác nhau để sử dụng cho quá trình ra quyết định quy trình kinh doanh, các dự án phát biểu và nghiên cứu.

    Tìm hiểu thêm 

    Ngân hàng không phải như trước đây. Hầu hết chúng ta cần các dịch vụ ngân hàng nhanh chóng, hiệu quả, hoàn hảo, không rắc rối và quan trọng nhất là đáng tin cậy. Chỉ có ý nghĩa khi chuyển sang các kênh ngân hàng kỹ thuật số có thể cung cấp những thứ này. Hóa ra, các trợ lý ảo hỗ trợ trí tuệ nhân tạo (AI) và máy học (ML) có thể thực hiện chính xác điều đó.

    Tìm hiểu thêm 

    Bạn đã bao giờ phải dịch các email quan trọng sang một ngôn ngữ khác chưa? Nếu vậy, bạn sẽ thấy bực bội khi biết rằng dịch vụ trả lời email của ai đó không thể dịch email của bạn cho bạn một cách nhanh chóng. Điều này có thể đặc biệt khó chịu nếu giao tiếp là chìa khóa cho bất kỳ tổ chức nào.

    Tìm hiểu thêm 

    Các thuật ngữ chatbot và trợ lý ảo được sử dụng để tạo các cuộc trò chuyện bằng cách sử dụng khả năng tự động hóa chỉ với một cú chạm của con người. Với độ phân giải tự trị, chatbots và trợ lý ảo cũng tăng tốc trải nghiệm của nhân viên và khách hàng.

    Tìm hiểu thêm 

    Thường được coi là một trong những miền phụ của phân loại văn bản, phiên bản đơn giản hóa của phân loại tài liệu có nghĩa là gắn thẻ các tài liệu và đặt chúng vào các danh mục được xác định trước - nhằm mục đích bảo trì dễ dàng và khám phá hiệu quả.

    Tìm hiểu thêm 

    Này Siri, bạn có thể tìm cho tôi một bài đăng trên blog hay về các xu hướng AI hội thoại hàng đầu không. Hoặc, Alexa, bạn có thể chơi cho tôi nghe một bài hát giúp tôi thoát khỏi những công việc thường ngày hàng ngày được không. Chà, đây không chỉ là những bài hùng biện mà còn là những cuộc thảo luận trong phòng vẽ tiêu chuẩn xác nhận tác động tổng thể của một khái niệm được gọi là AI hội thoại.

    Tìm hiểu thêm 

    OCR hoặc Nhận dạng ký tự quang học là một cách thú vị để đọc và hiểu tài liệu. Nhưng tại sao nó thậm chí còn có ý nghĩa? Hãy cùng tìm hiểu. Nhưng trước khi tiếp tục, chúng ta cần tìm hiểu một thuật ngữ máy học ít phổ biến hơn: RPA (Robotic Process Automation).

    Tìm hiểu thêm 

    Sự thật khó là chất lượng dữ liệu đào tạo được thu thập của bạn quyết định chất lượng của mô hình nhận dạng giọng nói hoặc thậm chí là thiết bị của bạn. Do đó, cần phải kết nối với các nhà cung cấp dữ liệu có kinh nghiệm để giúp bạn vượt qua quá trình mà không tốn nhiều công sức, đặc biệt khi đào tạo một mô hình hoặc các thuật toán liên quan yêu cầu thu thập, chú thích và các chiến lược khéo léo khác.

    Tìm hiểu thêm 

    Khả năng được truyền vào các cỗ máy - khiến chúng có khả năng tương tác theo những cách nhân đạo nhất có thể - có một mức độ khác biệt với nó. Tuy nhiên, câu hỏi vẫn còn là, làm thế nào để AI đàm thoại hoạt động trong thời gian thực và loại công nghệ nào đang thúc đẩy sự tồn tại của nó.

    Tìm hiểu thêm 

    Như tên cho thấy, dữ liệu tổng hợp là dữ liệu được tạo ra một cách nhân tạo chứ không phải được tạo ra bởi các sự kiện thực tế. Trong tiếp thị, truyền thông xã hội, chăm sóc sức khỏe, tài chính và bảo mật, dữ liệu tổng hợp giúp xây dựng các giải pháp sáng tạo hơn.

    Tìm hiểu thêm 

    Khi chúng ta nói về Nhận dạng ký tự quang học (OCR), đó là một lĩnh vực của Trí tuệ nhân tạo (AI) có liên quan cụ thể đến thị giác máy tính và nhận dạng mẫu. OCR đề cập đến quá trình trích xuất thông tin từ nhiều định dạng dữ liệu như hình ảnh, pdf, ghi chú viết tay và tài liệu được quét và chuyển đổi chúng sang định dạng kỹ thuật số để xử lý thêm.

    Tìm hiểu thêm 

    Hệ thống giám sát lái xe là một tính năng an toàn tiên tiến sử dụng camera gắn trên bảng điều khiển để theo dõi tình trạng tỉnh táo và buồn ngủ của người lái. Trong trường hợp người lái xe buồn ngủ và mất tập trung, hệ thống giám sát người lái xe sẽ tạo ra cảnh báo và khuyến nghị nên nghỉ ngơi.

    Tìm hiểu thêm 

    Xử lý ngôn ngữ tự nhiên là một trường con của Trí tuệ nhân tạo có khả năng phá vỡ ngôn ngữ của con người và cung cấp các nguyên lý giống nhau cho các mô hình thông minh. Bạn đã có kế hoạch sử dụng NLP làm công nghệ đào tạo mô hình của mình chưa? Đọc để biết những thách thức và giải pháp để khắc phục chúng.

    Tìm hiểu thêm 

    Trên hết, Conversational AI không ngừng học hỏi từ những kinh nghiệm trước đây bằng cách sử dụng bộ dữ liệu học máy để cung cấp thông tin chi tiết theo thời gian thực và dịch vụ khách hàng tuyệt vời. Ngoài ra, AI hội thoại không chỉ hiểu và trả lời các truy vấn của chúng tôi theo cách thủ công mà còn có thể được kết nối với các công nghệ AI khác như tìm kiếm và tầm nhìn để theo dõi nhanh quá trình.

    Tìm hiểu thêm 

    Nhận dạng hình ảnh là khả năng của phần mềm xác định các đối tượng, địa điểm, con người và hành động trong hình ảnh. Sử dụng bộ dữ liệu học máy, doanh nghiệp có thể sử dụng nhận dạng hình ảnh để xác định và phân loại các đối tượng thành nhiều loại.

    Tìm hiểu thêm 

    Trí tuệ nhân tạo làm cho máy móc thông minh hơn! Tuy nhiên, cách họ làm cũng khác và hấp dẫn như ngành dọc có liên quan. Ví dụ, những thứ như Xử lý ngôn ngữ tự nhiên rất hữu ích nếu bạn thiết kế và phát triển các chatbot hóm hỉnh và trợ lý kỹ thuật số. Tương tự như vậy, nếu bạn muốn làm cho lĩnh vực bảo hiểm trở nên minh bạch và dễ chịu hơn đối với người dùng, Computer Vision là miền phụ AI mà bạn phải tập trung vào.

    Tìm hiểu thêm 

    Máy có thể phát hiện cảm xúc chỉ bằng cách quét khuôn mặt? Tin tốt là họ có thể. Và tin xấu là thị trường vẫn còn một chặng đường dài phía trước trước khi chuyển sang xu hướng chủ đạo. Tuy nhiên, những rào cản và thách thức áp dụng không ngăn được các nhà truyền bá AI đưa 'Phát hiện cảm xúc' lên bản đồ AI — khá mạnh mẽ.

    Tìm hiểu thêm 

    Computer Vision không phổ biến như các ứng dụng AI khác như Xử lý ngôn ngữ tự nhiên. Tuy nhiên, nó đang dần tăng hạng, khiến năm 2022 trở thành một năm thú vị cho việc áp dụng quy mô lớn hơn. Dưới đây là một số tiềm năng về thị giác máy tính thời thượng (chủ yếu là các miền) dự kiến ​​sẽ được các doanh nghiệp khám phá tốt hơn vào năm 2022.

    Tìm hiểu thêm 

    Các doanh nghiệp trên toàn thế giới đang chuyển đổi từ tài liệu trên giấy sang xử lý dữ liệu kỹ thuật số. Nhưng, OCR là gì? Làm thế nào nó hoạt động? Và nó có thể được sử dụng trong quy trình kinh doanh nào để tận dụng lợi ích của nó? Hãy cùng tìm hiểu bài viết này để biết được những lợi ích mà OCR mang lại.

    Tìm hiểu thêm 

    Câu trả lời là Nhận dạng giọng nói tự động (ASR). Đó là một bước tiến lớn để chuyển từ nói sang dạng viết. Nhận dạng giọng nói tự động (ASR) là một xu hướng được thiết lập để gây tiếng ồn vào năm 2022. Và sự gia tăng phát triển của trợ lý giọng nói là do điện thoại thông minh tích hợp trợ lý giọng nói và các thiết bị thoại thông minh như Alexa.

    Tìm hiểu thêm 

    Bạn đang tìm kiếm bộ não đằng sau các mô hình Trí tuệ nhân tạo tốt nhất? Chà, cúi đầu trước các Trình chú giải dữ liệu. Mặc dù chú thích dữ liệu là trung tâm trong việc chuẩn bị các nguồn lực liên quan đến mọi ngành dọc do AI điều khiển, chúng ta sẽ khám phá khái niệm và tìm hiểu thêm về các nhân vật chính gắn nhãn từ quan điểm của Healthcare AI.

    Tìm hiểu thêm 

    Và bạn có thấy hấp dẫn không nếu người mua hàng thanh toán hóa đơn khi thanh toán chỉ bằng một khuôn mặt đại diện, không phải bất kỳ thẻ hoặc ví nào? Nhận dạng khuôn mặt cho phép các nhà bán lẻ phân tích tâm trạng và sở thích của người mua hàng dựa trên những lần mua hàng trước đây của họ.

    Tìm hiểu thêm 

    Với việc thanh toán kỹ thuật số ngày càng tăng đang được thực hiện trên toàn cầu, làm thế nào các tổ chức tài chính có thể đảm bảo chuyển đổi bán hàng tối đa và chấp nhận thanh toán, cũng như giảm thiểu rủi ro? Nghe có vẻ đáng báo động? Trong ngành tài chính phụ thuộc nhiều vào việc xử lý dữ liệu và thông tin, việc duy trì lợi thế biên cũng như hiểu được sắc thái tự nhiên của khách hàng để đưa ra giải pháp kịp thời đòi hỏi phải có công nghệ liên quan đến AI.

    Tìm hiểu thêm 

    Drone là một công cụ khả thi để thu thập dữ liệu và cung cấp thông tin thời gian thực. Sử dụng phân tích dữ liệu cho phép kiểm tra cầu, khai thác và dự báo thời tiết dễ dàng hơn.

    Tìm hiểu thêm 

    Phân tích tình cảm của Call Center là xử lý dữ liệu bằng cách xác định sắc thái tự nhiên của ngữ cảnh khách hàng và phân tích dữ liệu để làm cho dịch vụ khách hàng đồng cảm hơn.

    Tìm hiểu thêm 

    Chà, lý do đầu tiên không cần bất kỳ xác nhận nào. Các dự án máy học yêu cầu thuật toán, mua sắm dữ liệu, chú thích chất lượng cao và các khía cạnh phức tạp khác được chăm sóc cẩn thận.

    Tìm hiểu thêm 

    Là một nhánh của Trí tuệ nhân tạo, NLP là tất cả về việc làm cho máy móc phản ứng với ngôn ngữ của con người. Nói đến khía cạnh công nghệ của nó, NLP, khá thích hợp, sử dụng khoa học máy tính, ngôn ngữ học, thuật toán và cấu trúc ngôn ngữ tổng thể để làm cho máy móc trở nên thông minh. Các máy chủ động và trực quan, bất cứ khi nào được chế tạo, đều có thể trích xuất, phân tích và hiểu ý nghĩa và ngữ cảnh thực sự từ lời nói và thậm chí cả văn bản.

    Tìm hiểu thêm 

    Đây là nơi Chú thích hình ảnh y tế có vai trò nhất định vì nó truyền đạt hiệu quả kiến ​​thức cần thiết cho các thiết lập chẩn đoán Y tế do AI hỗ trợ để tăng cường sự hiện diện của thị giác máy tính chính xác, như là công nghệ phát triển mô hình cơ bản.

    Tìm hiểu thêm 

    Trí tuệ nhân tạo không cần phải là một chủ đề nghiệt ngã để thảo luận. Với khả năng trở thành công cụ biến đổi mạnh mẽ nhất trong những năm tới, AI đang nhanh chóng định hình thành một nguồn lực hỗ trợ thay vì duy trì như một công nghệ áp đảo.

    Tìm hiểu thêm 

    Bạn có biết về các kỹ thuật liên quan đến việc tạo ra các mô hình Học máy toàn diện, trực quan và có tác động không? Nếu không, trước tiên bạn cần hiểu cách mỗi quy trình được chia thành ba giai đoạn, tức là Vui vẻ, Chức năng và Khéo léo. Trong khi phần 'Finesse' liên quan đến việc đào tạo các thuật toán ML để hoàn thiện bằng cách đầu tiên phát triển các chương trình phức tạp sử dụng các ngôn ngữ lập trình có liên quan, phần 'Fun' là tất cả về việc làm cho khách hàng hài lòng bằng cách cung cấp cho họ sản phẩm thú vị thông minh và dễ hiểu.

    Tìm hiểu thêm 

    Hãy tưởng tượng một ngày đẹp trời thức dậy và nhìn thấy tất cả các đồ đựng trong bếp của bạn được bán trên thị trường toàn màu đen, khiến bạn không thể nhìn thấy những gì bên trong. Và khi đó, việc tìm kiếm những viên đường cho món trà của bạn sẽ là một thách thức. Với điều kiện, bạn có thể tìm thấy trà trước.

    Tìm hiểu thêm 

    Chú thích dữ liệu chỉ đơn giản là quá trình ghi nhãn thông tin để máy móc có thể sử dụng. Nó đặc biệt hữu ích cho học máy có giám sát (ML), trong đó hệ thống dựa vào các tập dữ liệu được gắn nhãn để xử lý, hiểu và học hỏi từ các mẫu đầu vào để đi đến kết quả đầu ra mong muốn.

    Tìm hiểu thêm 

    Việc ghi nhãn dữ liệu không phải là điều khó khăn như vậy, chưa từng có tổ chức nào cho biết! Nhưng bất chấp những thách thức trên đường đi, không nhiều người hiểu được bản chất chính xác của các nhiệm vụ trong tầm tay. Việc gắn nhãn các tập dữ liệu, đặc biệt là để làm cho chúng phù hợp với các mô hình AI và Máy học, là điều đòi hỏi nhiều năm kinh nghiệm và uy tín thực hành. Và trên hết, ghi nhãn dữ liệu không phải là cách tiếp cận một chiều và thay đổi tùy thuộc vào loại mô hình trong công trình.

    Tìm hiểu thêm 

    Nói một cách dễ hiểu, chú thích văn bản là tất cả về việc gắn nhãn các tài liệu cụ thể, các tệp kỹ thuật số và thậm chí cả nội dung liên quan. Sau khi các tài nguyên này được gắn thẻ hoặc gắn nhãn, chúng trở nên dễ hiểu và có thể được triển khai bởi các thuật toán học máy để đào tạo các mô hình trở nên hoàn thiện.

    Tìm hiểu thêm 

    Các dịch vụ tài chính đã biến chất theo thời gian. Sự gia tăng trong thanh toán di động, giải pháp ngân hàng cá nhân, giám sát tín dụng tốt hơn và các mô hình tài chính khác tiếp tục đảm bảo rằng lĩnh vực liên quan đến bao gồm tiền tệ không còn như trước đây vài năm. Vào năm 2021, không chỉ là về 'Fin' hay Finance mà là tất cả 'FinTech' với các Công nghệ tài chính đột phá khiến sự hiện diện của họ có thể thay đổi trải nghiệm khách hàng, phương thức hoạt động cho các tổ chức có liên quan hoặc chính xác là toàn bộ lĩnh vực tài chính.

    Tìm hiểu thêm 

    Bất chấp sự phát triển kịp thời của ngành công nghiệp ô tô, ngành dọc vẫn để lại rất nhiều phạm vi cho những cải tiến gia tăng. Bắt đầu từ việc giảm thiểu tai nạn giao thông đến cải thiện việc sản xuất phương tiện và triển khai tài nguyên, Trí tuệ nhân tạo dường như là giải pháp khả thi nhất để đưa mọi thứ tiến lên.

    Tìm hiểu thêm 

    Ngày nay, Trí tuệ nhân tạo có vẻ giống biệt ngữ tiếp thị hơn. Mọi công ty, công ty khởi nghiệp hoặc doanh nghiệp mà bạn biết hiện đều quảng bá sản phẩm và dịch vụ của mình với thuật ngữ 'được hỗ trợ bởi AI' làm USP. Đúng như vậy, trí tuệ nhân tạo dường như là không thể tránh khỏi ngày nay. Nếu bạn để ý, hầu hết mọi thứ xung quanh bạn đều được hỗ trợ bởi AI. Từ các công cụ đề xuất trên Netflix và các thuật toán trong ứng dụng hẹn hò cho đến một số thực thể phức tạp nhất trong lĩnh vực chăm sóc sức khỏe giúp hỗ trợ trong lĩnh vực ung thư, trí tuệ nhân tạo đang là điểm tựa của mọi thứ ngày nay.

    Tìm hiểu thêm 

    Học máy có lẽ có nhiều định nghĩa và cách giải thích hỗn hợp nhất trên thế giới. Những gì đã trở thành một từ thông dụng cách đây vài năm vẫn tiếp tục khiến nhiều người bối rối nhờ cách nó được miêu tả và trình bày.

    Tìm hiểu thêm 

    Trí tuệ nhân tạo (AI) đầy tham vọng và vô cùng có lợi cho sự tiến bộ của nhân loại. Đặc biệt, trong một lĩnh vực như chăm sóc sức khỏe, trí tuệ nhân tạo đang mang lại những thay đổi đáng kể trong cách chúng ta tiếp cận chẩn đoán bệnh, phương pháp điều trị, chăm sóc bệnh nhân và theo dõi bệnh nhân. Đừng quên nghiên cứu và phát triển liên quan đến việc phát triển các loại thuốc mới, các cách thức mới hơn để khám phá các mối quan tâm và tình trạng cơ bản, v.v.

    Tìm hiểu thêm 

    Chăm sóc sức khỏe, như một ngành dọc, không bao giờ tĩnh. Nhưng sau đó, nó chưa bao giờ có động lực này, với sự kết hợp của những hiểu biết khác nhau về y học, khiến chúng ta nhìn chằm chằm vào đống dữ liệu phi cấu trúc một cách vô hồn. Thành thật mà nói, khối lượng dữ liệu khổng lồ thậm chí không còn là vấn đề nữa. Đó là một thực tế, thậm chí còn vượt mốc 2,000 Exabyte vào cuối năm 2020.

    Tìm hiểu thêm 

    Trí tuệ nhân tạo là công nghệ cho phép máy móc bắt chước các hành vi của con người. Đó là tất cả về việc dạy cho máy móc cách học và suy nghĩ một cách tự chủ và sử dụng kết quả để phản ứng và phản hồi theo đó.

    Tìm hiểu thêm 

    Mỗi khi hệ thống định vị GPS của bạn yêu cầu bạn đi đường vòng để tránh giao thông, hãy nhận ra rằng những phân tích và kết quả chính xác như vậy sẽ đến sau hàng trăm giờ đào tạo. Bất cứ khi nào ứng dụng Google Ống kính của bạn xác định chính xác một đối tượng hoặc một sản phẩm, hãy hiểu rằng hàng nghìn sau hàng nghìn hình ảnh đã được xử lý bởi mô-đun AI (Trí tuệ nhân tạo) của ứng dụng đó để nhận dạng chính xác.

    Tìm hiểu thêm 

    4 điều cơ bản cần biết về dữ liệu Khử nhận dạng, Với tốc độ tạo dữ liệu diễn ra với tốc độ 2.5 tạ triệu byte mỗi ngày, chúng ta với tư cách là người dùng internet đã tạo ra gần 1.7 MB mỗi giây vào năm 2020.

    Tìm hiểu thêm 

    Giờ đây, toàn bộ hành tinh đã trực tuyến và được kết nối, chúng ta đang tạo ra một lượng lớn dữ liệu không thể đo đếm được. Một ngành, một doanh nghiệp, phân khúc thị trường hoặc bất kỳ thực thể nào khác sẽ xem dữ liệu như một đơn vị duy nhất. Tuy nhiên, theo như các cá nhân có liên quan, dữ liệu tốt hơn nên được gọi là dấu chân kỹ thuật số của chúng tôi.

    Tìm hiểu thêm 

    Dữ liệu chất lượng chuyển thành câu chuyện thành công trong khi chất lượng dữ liệu kém tạo ra một nghiên cứu điển hình tốt. Một số nghiên cứu điển hình có tác động lớn nhất đến chức năng AI bắt nguồn từ việc thiếu bộ dữ liệu chất lượng. Mặc dù tất cả các công ty đều hào hứng và tham vọng về các dự án và sản phẩm AI của họ, nhưng sự phấn khích không phản ánh về các hoạt động thu thập và đào tạo dữ liệu. Với việc tập trung nhiều hơn vào đầu ra hơn là đào tạo, một số doanh nghiệp cuối cùng đã trì hoãn thời gian tiếp thị, mất vốn hoặc thậm chí đóng cửa vĩnh viễn.

    Tìm hiểu thêm 

    Một quy trình để chú thích hoặc gắn thẻ dữ liệu được tạo, điều này cho phép các thuật toán máy học và trí tuệ nhân tạo xác định hiệu quả từng loại dữ liệu và quyết định nên học gì từ đó và phải làm gì với nó. Mỗi tập dữ liệu càng được xác định rõ ràng hoặc được gắn nhãn, thì các thuật toán càng có thể xử lý nó tốt hơn để có kết quả được tối ưu hóa.

    Tìm hiểu thêm 

    Alexa, có quán sushi nào gần tôi không? Thông thường, chúng tôi thường đặt những câu hỏi mở cho trợ lý ảo của mình. Đặt những câu hỏi như thế này cho đồng loại là điều dễ hiểu vì đây là cách chúng ta quen nói và tương tác. Tuy nhiên, đặt một câu hỏi rất bình thường một cách thông tục đối với một cỗ máy hầu như không có chút hiểu biết nào về ngôn ngữ và sự phức tạp trong giao tiếp không có ý nghĩa gì phải không?

    Tìm hiểu thêm 

    Chà, đằng sau mỗi sự cố đáng ngạc nhiên như vậy, có những khái niệm đang hoạt động như trí tuệ nhân tạo, học máy và quan trọng nhất là NLP (Xử lý ngôn ngữ tự nhiên). Một trong những bước đột phá lớn nhất trong thời gian gần đây của chúng tôi là NLP, nơi máy móc đang dần phát triển để hiểu cách con người nói chuyện, biểu hiện cảm xúc, hiểu, phản hồi, phân tích và thậm chí bắt chước các cuộc trò chuyện và hành vi theo cảm xúc của con người. Khái niệm này đã có ảnh hưởng lớn đến sự phát triển của chatbot, công cụ chuyển văn bản thành giọng nói, nhận dạng giọng nói, trợ lý ảo, v.v.

    Tìm hiểu thêm 

    Mặc dù là một khái niệm được giới thiệu vào những năm 1950, Trí tuệ nhân tạo (AI) đã không trở thành một cái tên phổ biến cho đến một vài năm trở lại đây. Sự phát triển của AI diễn ra dần dần và phải mất gần 6 thập kỷ để cung cấp các tính năng và chức năng điên rồ như ngày nay. Tất cả điều này là vô cùng khả thi do sự phát triển đồng thời của các thiết bị ngoại vi phần cứng, cơ sở hạ tầng công nghệ, các khái niệm liên minh như điện toán đám mây, hệ thống lưu trữ và xử lý dữ liệu (Dữ liệu lớn và phân tích), sự thâm nhập và thương mại hóa của internet, v.v. Mọi thứ kết hợp với nhau đã dẫn đến giai đoạn tuyệt vời của dòng thời gian công nghệ, nơi AI và Học máy (ML) không chỉ là nguồn cung cấp năng lượng cho những đổi mới mà còn trở thành những khái niệm không thể tránh khỏi.

    Tìm hiểu thêm 

    Mọi hệ thống AI đều cần khối lượng lớn dữ liệu chất lượng để đào tạo và cung cấp kết quả chính xác. Bây giờ, có hai từ khóa trong câu này - khối lượng lớn và dữ liệu chất lượng. Hãy thảo luận cả hai riêng lẻ.

    Tìm hiểu thêm 

    Tất cả các cuộc trò chuyện và thảo luận cho đến nay về việc triển khai trí tuệ nhân tạo cho các mục đích kinh doanh và hoạt động chỉ là bề ngoài. Một số nói về lợi ích của việc triển khai chúng trong khi những người khác thảo luận về cách một mô-đun AI có thể tăng năng suất lên 40%. Nhưng chúng tôi hầu như không giải quyết những thách thức thực sự liên quan đến việc kết hợp chúng cho mục đích kinh doanh của mình.

    Tìm hiểu thêm 

    Thật khó để tưởng tượng việc chống lại đại dịch toàn cầu mà không có các công nghệ như Trí tuệ nhân tạo (AI) và Học máy (ML). Sự gia tăng theo cấp số nhân của các trường hợp mắc bệnh Covid-19 trên khắp thế giới khiến nhiều cơ sở hạ tầng y tế bị tê liệt. Tuy nhiên, các thể chế, chính phủ và tổ chức đã có thể chống lại với sự trợ giúp của các công nghệ tiên tiến. Trí tuệ nhân tạo và máy học, từng được coi là thứ xa xỉ để nâng cao lối sống và năng suất, đã trở thành những tác nhân cứu mạng trong việc chống lại Covid nhờ vô số ứng dụng của chúng.

    Tìm hiểu thêm 

    Một số nhóm người nhất định phải trải qua cơn đau dữ dội hơn. Các nghiên cứu đã chỉ ra rằng các cá nhân thuộc nhóm thiểu số và kém may mắn có xu hướng phải chịu nhiều đau đớn về thể chất hơn so với dân số chung do căng thẳng, sức khỏe tổng thể và các yếu tố khác.

    Tìm hiểu thêm 

    Trước khi bạn có kế hoạch mua dữ liệu, một trong những cân nhắc quan trọng nhất trong việc xác định số tiền bạn nên chi cho dữ liệu đào tạo AI của mình. Trong bài viết này, chúng tôi sẽ cung cấp cho bạn những hiểu biết sâu sắc để phát triển ngân sách hiệu quả cho dữ liệu đào tạo AI.

    Tìm hiểu thêm 

    Shaip là một nền tảng trực tuyến tập trung vào các giải pháp dữ liệu AI chăm sóc sức khỏe và cung cấp dữ liệu chăm sóc sức khỏe được cấp phép được thiết kế để giúp xây dựng các mô hình AI. Nó cung cấp hồ sơ y tế bệnh nhân dựa trên văn bản và dữ liệu xác nhận quyền sở hữu, âm thanh như bản ghi âm của bác sĩ hoặc cuộc trò chuyện của bệnh nhân / bác sĩ và hình ảnh và video dưới dạng kết quả chụp X-quang, chụp CT và MRI.

    Tìm hiểu thêm 

    Dữ liệu là một trong những yếu tố quan trọng nhất để phát triển một thuật toán AI. Hãy nhớ rằng chỉ vì dữ liệu đang được tạo nhanh hơn bao giờ hết không có nghĩa là dữ liệu phù hợp dễ dàng có được. Dữ liệu chất lượng thấp, thiên vị hoặc được chú thích không chính xác có thể (tốt nhất) có thể thêm một bước khác. Các bước bổ sung này sẽ làm bạn chậm lại vì nhóm phát triển và khoa học dữ liệu phải làm việc thông qua những bước này trên đường đến một ứng dụng chức năng.

    Tìm hiểu thêm 

    Nhiều người đã nói về tiềm năng của trí tuệ nhân tạo trong việc chuyển đổi ngành công nghiệp chăm sóc sức khỏe, và vì lý do chính đáng. Các nền tảng AI tinh vi được thúc đẩy bởi dữ liệu và các tổ chức chăm sóc sức khỏe có rất nhiều nguồn dữ liệu đó. Vậy tại sao ngành công nghiệp này lại tụt hậu so với các ngành khác về việc áp dụng AI? Đó là một câu hỏi đa nghĩa với nhiều câu trả lời có thể. Tuy nhiên, tất cả chúng chắc chắn sẽ làm nổi bật một trở ngại đặc biệt: lượng lớn dữ liệu phi cấu trúc.

    Tìm hiểu thêm 

    Tuy nhiên, những gì có vẻ đơn giản lại tẻ nhạt để phát triển và triển khai giống như bất kỳ hệ thống AI phức tạp nào khác. Trước khi thiết bị của bạn có thể nhận ra hình ảnh mà bạn chụp và các mô-đun Học máy (ML) có thể xử lý nó, một công cụ chú thích dữ liệu hoặc một nhóm trong số họ sẽ dành hàng nghìn giờ để chú thích dữ liệu để máy móc có thể hiểu được chúng.

    Tìm hiểu thêm 

    Trong phần khách mời đặc biệt này, Vatsal Ghiya, Giám đốc điều hành và đồng sáng lập của Shaip, khám phá ba yếu tố mà ông tin rằng sẽ cho phép AI theo hướng dữ liệu phát huy hết tiềm năng trong tương lai: tài năng và nguồn lực cần thiết để xây dựng các thuật toán sáng tạo, lượng dữ liệu khổng lồ để đào tạo chính xác các thuật toán đó và sức mạnh xử lý dồi dào để khai thác dữ liệu đó một cách hiệu quả. Vatsal là một doanh nhân nối tiếp với hơn 20 năm kinh nghiệm trong lĩnh vực dịch vụ và phần mềm AI chăm sóc sức khỏe. Shaip cho phép mở rộng quy mô nền tảng, quy trình và con người theo yêu cầu của mình cho các công ty có các sáng kiến ​​máy học và trí tuệ nhân tạo đòi hỏi khắt khe nhất.

    Tìm hiểu thêm 

    Các quy trình trong hệ thống Trí tuệ nhân tạo (AI) mang tính tiến hóa. Không giống như các sản phẩm, dịch vụ hoặc hệ thống khác trên thị trường, các mô hình AI không cung cấp các trường hợp sử dụng tức thì hoặc ngay lập tức cho kết quả chính xác 100%. Kết quả phát triển với việc xử lý nhiều dữ liệu có liên quan và chất lượng hơn. Nó giống như cách một em bé học nói hoặc cách một nhạc sĩ bắt đầu bằng cách học năm hợp âm chính đầu tiên và sau đó xây dựng chúng. Thành tích không thể mở khóa trong một sớm một chiều, nhưng quá trình đào tạo diễn ra liên tục để đạt được sự xuất sắc.

    Tìm hiểu thêm 

    Bất cứ khi nào chúng ta nói về Trí tuệ nhân tạo (AI) và Máy học (ML), những gì chúng ta hình dung ngay đến là các công ty công nghệ hùng mạnh, các giải pháp tiện lợi và tương lai, những chiếc xe tự lái ưa thích và về cơ bản là mọi thứ đều mang tính thẩm mỹ, sáng tạo và trí tuệ. Điều mà mọi người khó dự đoán là thế giới thực đằng sau tất cả những tiện ích và trải nghiệm lối sống do AI cung cấp.

    Tìm hiểu thêm 

    Một cuộc phỏng vấn độc quyền trong đó Utsav, Giám đốc kinh doanh - Shaip tương tác với Sunil, Biên tập viên điều hành, Công ty khởi nghiệp của tôi để tóm tắt cho anh ấy về cách Shaip nâng cao cuộc sống con người bằng cách giải quyết các vấn đề trong tương lai với các dịch vụ AI hội thoại và AI chăm sóc sức khỏe của mình. Ông nói thêm rằng AI, ML được thiết lập để cách mạng hóa cách chúng ta kinh doanh và cách Shaip sẽ đóng góp vào sự phát triển của các công nghệ thế hệ tiếp theo.

    Tìm hiểu thêm 

    Trí tuệ nhân tạo (AI) đang làm cho lối sống của chúng ta tốt hơn thông qua các đề xuất phim hay hơn, đề xuất nhà hàng, giải quyết xung đột thông qua chatbot, v.v. Sức mạnh, tiềm năng và khả năng của AI đang ngày càng được sử dụng hiệu quả trong các ngành công nghiệp và trong các lĩnh vực mà có lẽ không ai nghĩ tới. Trên thực tế, AI đang được khám phá và triển khai trong các lĩnh vực như chăm sóc sức khỏe, bán lẻ, ngân hàng, tư pháp hình sự, giám sát, tuyển dụng, khắc phục khoảng cách tiền lương, v.v.

    Tìm hiểu thêm 

    Tất cả chúng ta đều đã thấy điều gì sẽ xảy ra khi sự phát triển của AI gặp trục trặc. Hãy xem xét nỗ lực của Amazon trong việc tạo ra một hệ thống tuyển dụng AI, đây là một cách tuyệt vời để quét lý lịch và xác định những ứng viên đủ tiêu chuẩn nhất - miễn là những ứng viên đó là nam giới.

    Tìm hiểu thêm 

    Ngành công nghiệp chăm sóc sức khỏe đã được đưa vào thử nghiệm vào năm ngoái do đại dịch và rất nhiều đổi mới đã xuất hiện — từ các loại thuốc và thiết bị y tế mới cho đến các đột phá trong chuỗi cung ứng và các quy trình hợp tác tốt hơn. Các nhà lãnh đạo doanh nghiệp từ tất cả các lĩnh vực của ngành đã tìm ra những cách thức mới để đẩy nhanh tốc độ tăng trưởng nhằm hỗ trợ lợi ích chung và tạo ra doanh thu quan trọng.

    Tìm hiểu thêm 

    Chúng tôi đã thấy chúng trong các bộ phim, chúng tôi đã đọc về chúng trong sách và chúng tôi đã trải nghiệm chúng trong cuộc sống thực. Có vẻ như khoa học viễn tưởng, Chúng ta phải đối mặt với sự thật - nhận dạng khuôn mặt vẫn tồn tại. Công nghệ đang phát triển với tốc độ linh hoạt và với các trường hợp sử dụng đa dạng đang xuất hiện trong các ngành công nghiệp, phạm vi phát triển rộng rãi của nhận dạng khuôn mặt dường như là không thể tránh khỏi và vô hạn.

    Tìm hiểu thêm 

    Chatbots đa ngôn ngữ đang biến đổi thế giới kinh doanh. Chatbots đã đi một chặng đường dài kể từ giai đoạn đầu, nơi họ cung cấp các câu trả lời đơn giản chỉ gồm một từ. Một chatbot hiện có thể trò chuyện thành thạo bằng hàng chục ngôn ngữ, cho phép các doanh nghiệp mở rộng ra thị trường toàn cầu rộng lớn hơn.

    Tìm hiểu thêm 

    Chăm sóc sức khỏe thường được coi là một ngành công nghiệp tiên tiến của sự đổi mới công nghệ. Điều đó đúng theo nhiều cách, nhưng không gian chăm sóc sức khỏe cũng được quản lý chặt chẽ bởi luật pháp sâu rộng như GDPR và HIPAA, cùng với nhiều hướng dẫn và hạn chế của địa phương.

    Tìm hiểu thêm 

    Một báo cáo năm 2018 tiết lộ rằng chúng tôi đã tạo ra gần 2.5 nghìn tỷ byte dữ liệu mỗi ngày. Trái ngược với suy nghĩ thông thường, không phải tất cả dữ liệu chúng tôi tạo ra đều có thể được xử lý để có thông tin chi tiết.

    Tìm hiểu thêm 

    Trí tuệ nhân tạo ngày càng thông minh hơn. Ngày nay, các thuật toán học máy mạnh mẽ đã nằm trong tầm tay của các doanh nghiệp bình thường và các thuật toán yêu cầu sức mạnh xử lý mà trước đây chỉ dành cho các máy tính lớn, giờ đây có thể được triển khai trên các máy chủ đám mây giá cả phải chăng.

    Tìm hiểu thêm